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Abstract

Agents with memory constraints must make trade-offs as to what information to remember over time.

They may choose to remember signals, and form posterior beliefs only when asked; or alternatively,

they may only remember posterior beliefs, and neglect to remember past signals. We demonstrate that

memory constrained agents who can flexibly and optimally choose what information to remember will

alter their choices in response to changes in the decision-making environment. When there is more

uncertainty about which states are relevant for a decision, or when there are fewer signals, agents will

tend to remember signals, and only form posteriors from signals when required. In contrast, when there is

little uncertainty about the decision-relevant states or many signals, agents choose to remember posterior

beliefs over the relevant states, and neglect to remember signals.
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1 Introduction

When individuals make decisions that depend on the dynamic acquisition of information, they typically

sequentially observe partially informative signals about some underlying states of the world, knowing that

at some point they must stop and make a decision. This framework has been applied throughout economics,

e.g. choosing how much data to acquire in sequential testing (Wald, 1945), deciding when to stop when

engaging in search with learning (Rothschild, 1974), or deciding which of many risky options to choose in a

multi-armed bandit problem (Bergemann and Valimaki, 2006).

Although traditionally economics has tended to assume that decision-makers can perfectly remember

past information at zero cost, it is well documented that individuals have limited and imperfect memory.

For example, it is well known that individuals have bounds on their ability to remember sequences of digits

(Miller, 1956), informational chunks (Cowan, 2010), and verbal units (Oberauer et al., 2016) — for a survey

see Ericsson and Kintsch (1995). A the same time, it appears individuals are at least partially aware of their

memory bounds and try to allocate memory optimally (e.g. Brady et al., 2009; Da Silveira et al., 2020),

including improving memory when incentives increase (Wieth and Burns, 2006; Spaniol et al., 2014).

Such issues of bounded memory become extremely important under sequential information acquisition,

because decision-makers must choose what, and how much, to remember over time. A standard approach to

modeling decision-makers in these environments assumes that at the beginning of each period the decision-

maker has a prior belief, observes a signal, and updates the prior to a posterior, which becomes the prior for

the following period. The typical assumption is that the agent perfectly remembers their posterior belief at

the end of every period. In contrast, a distinct intuition is that decision-makers begin with an initial prior,

and at the end of every period know that initial prior, and all past signals they have observed. Whenever they

are prompted to make a decision, they combine the initial prior with the past signals that they remember

to form a posterior belief. However, across periods this posterior belief is not remembered — each time the

agent needs to make a decision they combine the initial prior with the set of remembered signals.

Of course, if decision-makers have perfect, costless memory and are Bayesian, these two cognitive processes

are equivalent: the initial prior updated with the set of signals observed up until time t gives the same final

belief over states as a sequential updating procedure where each period the decision-maker updates last

period’s posterior with the current period’s signal, to form this period’s posterior.

However, if agents have limited memory, these processes may not generate equivalent final beliefs and

observable behaviors. Within economics, there have been numerous approaches modelling cognitively limited

agents who either keep track of posteriors after every signal (e.g. Wilson, 2014) or agents who keep track

of signals, and only when asked to make a decision combine those signals into a posterior (e.g. Bordalo

et al., 2023). These papers demonstrate that limited memory, combined with either of these two cognitive

processes, can generate important behavioral biases. Moreover, they tend to show that these two distinct

cognitive processes can explain different kinds of biases.

Despite the fact that both processes have appealing intuitions, researchers have tended to assume decision-

makers only use one of the two. To our knowledge, there have been limited attempts to explore which, of

these two cognitive processes individuals actually employ, and if both, when they employ one or the other.
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This paper develops a framework which allows us to predict and test, whether, and when, each of these

two memory processes are being used by decision-makers. We show that individuals respond to the implicit

incentives in the economic environment and trade off the costs of remembering different kinds of information

— signals versus posteriors over states. We find that across two different treatments lab subjects respond in

a way predicted by theory. Specifically, we focus on two central factors of the environment: (1) uncertainty

about the decision-relevant dimension and (2) the number of signals individuals observe before making a

decision. We find that environments with a large number of states, and uncertainty about which of them

will be relevant for the decision, and few signals, lead decision-makers to focus on remembering signals, and

updating beliefs only when necessary. In contrast, in situations with a clear decision-relevant dimension

and many signals, decision-makers instead update posterior beliefs over states every period, and tend not to

remember past signals. Our data can be rationalized by a simple framework of subjects optimally trading

off the costs and benefits of remembering different pieces of information over time.

Such findings are in line with intuitions about real-world behavior. Consider the following two examples.

First, a financial analyst may be tasked to assess whether a specific stock is likely to increase or decrease in

value in the future. In this case the analyst is only interested in one particular dimension, the rise/decline in

stock value of the particular company, when observing new information. Moreover, the analyst may observe

a large number of signals when sifting through many different data sets one after the other. It is likely that

in this setting, the analyst continuously updates a posterior belief regarding the likelihood of the stock value

going up or not. On the other hand, consider the example of a detective piecing together different clues

regarding the likelihood that different suspects are guilty. With only a small number of clues available and

each clue providing some information about many different suspects, it is likely that the detective keeps track

of all individual signals instead of updating a posterior belief for each suspect. In the end, the detective may

form a posterior belief about a specific suspect.

In Section 2 we discuss the related literature on the topic of memory and sequential information pro-

cessing. We provide evidence from the literature that people’s memory is constraint and as a result people

attempt to optimize their memory usage. Moreover, we categorize existing papers on sequential information

processing by their assumption about memory of the decision-maker. Two assumptions are commonly made

by existing theoretical papers: people are either assumed to keep track of only posterior beliefs or only

individual signals. Categorizing existing papers reveals that the decision environments differ significantly

between the different groups of models. In addition, existing experimental papers provide empirical support

for both assumptions.

In Section 3, we develop a simple model that captures the essence of our approach. We consider a

sequential learning environment where remembering information is costly but individuals can freely choose

what information they would like to keep track of. There is a single rational decision-maker who receives

multiple pieces of information over time. The decision-maker is constrained by a cost of remembering

information. At each point in time the decision-maker can choose what information they want to remember

until the next period. They can choose to remember aggregated information in the form of posterior beliefs,

observed signals, or both. After the final period, the decision-maker is faced with a decision. We study the
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problem of optimal memory for the decision-maker and analyze the role of different decision environments

on optimal memory. If individuals incur costs for remembering more information they should respond to

changes in the environment by changing what kind of aggregated information they choose to remember.

Specifically, we vary the number of decision-relevant dimensions and the number of signals. We find that 1)

there exist scenarios in which a decision-maker never remembers any signals but instead keeps track of at

least some posterior beliefs and 2) there exist other scenarios in which a decision-maker never keeps track of

any posterior beliefs but remembers at least some signals.

In Section 4, we develop an experimental paradigm that allows us to test the key predictions of our model.

In the experiment, subjects observe multiple pieces of information in a sequential manner before making a

decision in the end. Importantly, our experimental design allows us to cleanly vary different factors of the

environment. We compare the behavior of participants in two treatments. Specifically, we compare the

behavior of subjects in an environment with relatively many signals and a clear question to the behavior

in a setting with relatively few signals and multiple potential questions. The key challenge is to elicit what

subjects keep track of in an incentive-compatible way while not affecting subjects’ behavior in the task

itself. We solve this challenge by eliciting the preferences for a posterior/signal memory question from each

participant. This allows learning what participants keep track of while receiving new information. Finally,

subjects are faced with a cognitively demanding distraction task after each signal to increase the memory

load.

In Section 5 we provide the results from the experiment. We find robust differences between the two

treatment conditions, showing that the learning environment clearly influences what people remember. The

direction of the difference provides strong evidence in support of the theoretical predictions. The majority

of subjects keep track of posterior beliefs in an environment with many signals but only a single decision-

relevant dimension while the majority of subjects remember individual signals in an environment with few

signals and multiple decision-relevant dimension. In addition, we analyze the accuracy of reported beliefs

and recalled signals across the two treatments. Those people that kept track of posterior beliefs in each

treatment report similar beliefs on average, and those people that kept track of individual signals recalled a

specific signal with similar accuracy. Lastly, we provide an overview of subject’s behavior in the distraction

task.

Finally, Section 6 concludes with a discussion of the findings.

Our contribution to the literature on memory, information acquisition, and Bayesian updating is three-

fold. First, we view our work providing a more careful understanding of what decision-makers choose

to remember, and how this responds to changes in the environment. We extend work that shows that

individuals alter how much they want to remember in response to changes in the economic environment and

we demonstrate that they change the qualitative kind of information they choose to remember. Second,

our approach unifies several strands of the literature in behavioral and experimental economics, which have

typically either assumed individuals can keep track of a summary “posterior” (or some other sufficient

statistic) or they can keep track of past signals, but not both. We show that both approaches are valid,

depending on the environment under consideration. Third, we provide a new experimental framework for
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more closely understanding the impact of economic environments on memory. Our framework allows us

to vary the cognitive costs associated with different memory strategies, and so is distinct from existing

approaches which typically vary the incentives (i.e. benefits) of remembering.

Of course our paper also abstracts away from many important details, both in our model and experimental

design. For example, we focus on two extreme memory strategies — we construct environments where we

believe that a decision-maker will likely focus on remembering only posteriors or only signals. Of course, in

the real world, they are likely to attempt to remember some of both. We also suppose that there is no cost

to updating a belief. In reality, combining signals with posteriors is a cognitively demanding task, and likely

one that an agent would like to do as few times as possible.

2 Literature

Human memory is an extensively studied topic in psychology and, more recently, economics. Kahana (2012)

provides a thorough review of the foundations of human memory. Our paper most directly relates to the

concept of ‘recall’. We, in particular, focus on the fact that humans tend to have limited recall, and that the

accuracy of recall seems to be influenced by incentives. Perhaps the most widely known paper on limited

recall is Miller (1956), who found that recall memory is limited and on average, people can recall 7 distinct

chunks of information (i.e. numbers) from working memory. The precise limitations of working memory is

not entirely settled, e.g., in a different setting, verbal chunks, Cowan (2010) finds that the capacity limit

of working memory is reached with only 3 to 5 different items (Oberauer et al. (2016) provides a recent

review of empirical work on limited memory, with views towards understanding the form of the constraints).

Ericsson and Kintsch (1995) provides an overview of evidence that long term memory is similarly capacity

constrained.

There is also a literature that suggests that humans alter their use of memory in the face of incentives.

Many studies have suggested (see, e.g. Miller (1956) and Brady et al. (2009) for classic and recent takes on

this idea), that individuals can re-code or compress information to make better use of limited memory, while

some papers (such as Brady et al., 2009) show that this can occur as a response to heightened incentives.

Building on these insights, authors such as Bays and Husain (2008); Ma et al. (2014) suggest that memory

should be viewed as a limited resource that one can flexibly allocate between different tasks.

Within economics and related fields, a fairly diverse set of approaches have been taken in order to try

and model, as well as test, limited memory. Most papers typically make one of two assumptions. The first

is that a decision-maker keeps track of a posterior belief (or single summary statistic) regarding the state

of the world, updates this in response to each new signal, and then has no further need to recall signals.

The second is that a decision-maker attempts to keep track of all individual signals. Only when asked to

make a decision do they attempt to aggregate those signals into a belief over states of the world, which

they then use to make a decision. We turn to discusses papers using each approach in detail below. Table

1 in the appendix provides a summary. The first column of the Table lists the article, while the second

categorizes the contribution as either theoretical (t) or empirical (e). The third column discusses the type of
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cognitive bounds placed on the the decision-maker, whether they be a finite set of memory states, the ability

to only selectively or imperfectly recall memories, the decay of memory, or a cost of memory. The final

column summarizes important details about the setting, including the number of states, signals, and what

kind of decisions the decision-maker must take. The papers are categorized by their assumption regarding

the memory of information over time, i.e. posterior beliefs or individual signals, or whether the decision is

endogenous.

We first turn to papers that assume individuals keep track of posteriors (or a summary statistic) across

periods. In early theoretical work Cover and Hellman (1970) propose a model of learning with finitely

many memory states in the two-armed bandit problem. They assume the learner can only remember a

summary statistic (e.g., a posterior) that can take on finite values. Wilson (2014) generalizes their model,

and characterizes the optimal protocol. The memory constraint as formalized by Wilson is also applied

in settings with dynamically changing states (Monte and Said, 2010; Chatterjee et al., 2022), arbitrary

termination each period (Hu, 2023), endogenous learning (Kocer, 2010; Chatterjee and Hu, 2023), and

strategic settings such as cheap talk games (Monte, 2005) and zero-sum games (Monte, 2013, 2014). In a

similar vein, Dow (1991) considers an agent engaged in sequential search, but can only recall past summary

information.

The second approach, that people remember individual signals and only form posteriors when needed

to make decisions, originated in economics with Mullainathan (2002). In more recent work, papers such

as Bordalo et al., Wachter and Kahana (2023), Enke et al. (2023), Graeber et al. (2022), Fudenberg et al.

(2022), Neligh (2022) and Leung (2023) make a similar assumption that people recall past signals when asked

to make a decision, albeit with very different assumptions about the form of recall. While many assume

that that past signals are selectively recalled based on association or similarity, others operate under the

assumption that memory decays, while some allow for both. A somewhat distinct literature on motivated

beliefs, beginning with Bénabou and Tirole (2002); Bénabou and Tirole (2004), extended by Gottlieb (2014)

and Chew et al. (2020), also assumes that individuals recall past signals rather than their previous posteriors.

We next turn to existing experimental work in economics and psychology that looks at individuals’

ability to either recall past signals or provide beliefs about the state of the world in environments that

feature dynamic information acquisition.

While there is a voluminous literature eliciting posterior beliefs over states of the world, a much smaller

literature is explicitly devoted to looking at situations where signals are acquired sequentially. Although

not explicitly motivated by concerns about limited memory, in a recent survey paper Benjamin (2019) pools

data from eight existing studies where subjects were shown signals sequentially to examine how people

update. Benjamin distinguishes two types of behavior, ‘pooling’ and ‘acceptive’. Pooling behavior implies

that whenever people observe a new signal they pool together all signals they have received up until that

point and update their belief using their initial prior belief — implying that individuals should keep track of

signals, not their posteriors, between periods. Acceptive behavior, on the other hand, implies that after each

new signal people update their belief and this updated belief becomes the new prior belief — implying that

individuals keep track of posteriors between periods. Benjamin finds no evidence for pooling behavior and
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therefore suggests that people are acceptive, i.e. they update their belief after every new signal. However,

many of the studies used by Benjamin (2019) feature environments where our approach would predict that

posteriors are relatively easy to keep track of — e.g., few decision-relevant states.

In contrast, other recent work, such as Enke et al. (2023), Graeber et al. (2022) and Bordalo et al. (2023),

are motivated explicitly by models that assume individuals remember signals. They tend to find support

for the conjecture that individuals carry around memories of past signals (i.e. evidence for what Benjamin

(2019) would call pooling). Outside of economics, papers such as Shadlen and Shohamy (2016) also find

that subjects seem to form beliefs about states of the world only when asked, and do so by sampling past

signals from memory. That said, some of these settings, such as Bordalo et al. (2023), feature details that

our model would predict should induce such behavior, such as subjects not knowing what they will be asked

about in the future.

There are a few papers that are closer to our question: do we observe individuals trading off whether

to remember signals or posteriors? Da Silveira et al. (2020) study the optimal memory of a decision-maker

in a dynamic forecasting problem, and find that it is optimal to keep track of a single aggregate summary

statistic in this setting. But their environment has features that make keeping track of signals relatively

costly, and aggregate statistics relatively cheap. d’Acremont et al. (2013) find evidence that there are two

distinct regions working in parallel when forming subjective beliefs. One region of the brain combines the

signal with prior information to update a posterior belief while another region encodes the frequencies of

observing signals.

3 Framework

3.1 Model

We next turn to providing a formal model that encapsulates the trade offs that a decision-maker with limited

memory would face when trying to decide whether to remember posteriors over states or signals. We keep

the model as simple as possible in order to accentuate the novel intuitions.

Environment As in most models involving decisions under uncertainty, we begin by describing the set

of states. We assume a state space with a particular structure: there are D independent dimensions, and

abusing notation slightly, indexed by d = 1, ..., D. Each dimension d can take on one of two realizations, 0 or

1. The state space is then denoted by Ω = ×Dd (with representative state ω which can be associated with a

vector of length D with entries 0 or 1, corresponding to the realization of each of the dimensions). For each

dimension d, there exists a bet bd,k. A bet is a menu of two acts. The act ad,0 pays off L > 0 if dimension d

has realized value k = 0 and 0 otherwise; and the act ad,1 pays off L > 0 if dimension d has realized value

k = 1 and 0 otherwise. ∆(b) is a set of lotteries over bets, with generic lottery q. If a given bet is realized,

the decision-maker must choose between the two acts in that bet. We denote m(q) as the maximum weight

applied to any dimension in distribution q; i.e. m(q) = maxd∈Dq(d).

The decision-maker has a prior belief ψ ∈ [0, 1]D over realizations of each dimension, where ψd indicates

the likelihood that dimension d has realization 1. This generates a prior over states Ω in the natural way. In
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each period t = 1, ..., T the decision-maker observes an independently drawn signal s from the set of possible

signals S. The Blackwell matrix Gω,s gives the probability of observing signal s, conditional on state ω.

Decision problem. The decision-maker faces a decision problem q, L, T , where they will first observe T

signals sequentially and then, at time period T+1, will face a bet b that is drawn from q.1 L is the parameter

that governs the size of the payoffs from the bet. Next the decision-maker chooses one of the two acts from

the realized bet, then the state is realized. If the decision-maker chose the correct act from the bet they

receive a payoff of L and otherwise 0.

Information processing and memory. Remembering information across periods comes at a cost to the

decision-maker. We first describe how the agent can process information in any given period t.

At the beginning of each period t, the decision-maker has a set of state variables remembered from the

previous period:

• the original prior belief ψ ∈ [0, 1]D;2

• a set Rt ⊆ D of dimensions where the belief from the prior period is inherited, and for each d ∈ R, an

associated ρtd, which indicated the (posterior) belief that d = 1.

• A set M t of signals remembered from period t− 1, which is a collection of pairs (m, τ), one for each τ

between 1 and t− 1, where m ∈ S ∪ ∅

In each period t, after observing signal st, the decision-maker can first update their belief about different

dimensions. We assume that updating beliefs is costless and the decision-maker therefore updates their

beliefs about all dimensions.3 We denote βt
d(ψ,R

t,M t, st) ∈ [0, 1] as the Bayesian update of beliefs about

dimension d at time t given the initial state variables, and the observed signal in this period.

The decision-maker chooses a strategy ζ to process information. A strategy ζ is a sequence of mappings,

ζ1, ..., ζT , where each ζt is a mapping from any possible ψ,Rt,M t, st to a set of remembered beliefs, Rt+1,

and signals, M t+1, (see below for details). We assume that an agent always knows the strategy they are

employing, and that the agent can commit to the ex-ante optimal strategy. As part of the strategy ζ, the

decision-maker can then choose among several possible actions to remember the information for next period.

We assume that remembering a chunk of information (either a particular signal or the belief about a particular

dimension) incurs a fixed cost. We allow for memory costs to vary between beliefs about dimensions and

signals. The cost for remembering a given dimension we denote as cd, while the cost for remembering a given

signal is cs.

• The decision-maker can choose for any d ⊂ D, to remember βt
d(ψ,R

t,M t, st). For each d that they

choose to remember, they must pay a fixed cost cd. Let y
t
d(ϕ,R

t,M t, ζt) ∈ {0, 1} be a binary variable

1Our results are qualitatively similar if if the agent, instead of knowing when they must take a decision, faced uncertainty

about when the bet must be taken.
2Of course, it is not obvious that a decision-maker would be able to remember the original prior costlessly. One natural

interpretation of our assumption is that ψ is simply whatever belief the agent would use as a prior, in the absence of remembering

anything else. The substantive assumption is then that the agent always uses the same ψ regardless of the time period, or

anything else they do remember. However, we view such an assumption as a natural starting point for our model.
3In Section 3.3 we relax this assumption and discuss the implications.
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indicating whether the decision-maker remembers beliefs about dimension d at the end of time t. If

dimension d is remembered then d ∈ Rt+1 and ρt+1
d = βt

d(ψ,R
t,M t, st)

• The decision-maker can choose which signals they wish to remember until the next period. Given M t

and st, the decision-maker can pay a cost cs to remember any given element of M t ∪ (st, t). If they

choose to pay the cost for a given (m, τ) then mt+1
τ = mt

τ with 1 ≤ τ ≤ t− 1 or mt+1
τ = st with τ = t.

If they don’t pay the cost for a given τ then mt+1
τ = ∅. This implies that once a signal was forgotten

it cannot be recovered in the future. Let ztτ (ϕ,R
t,M t, ζt) ∈ {0, 1} be a binary variable indicating

whether the decision-maker remembers signal τ at the end of time t. Taken together, this implies:

mt+1
τ =


∅ if ztτ = 0m

t
τ for τ ≤ t− 1

st for τ = t

if ztτ = 1

Preferences and the Optimization Problem. We assume that the decision-maker has complete knowledge

about the environment and the decision problem. We assume the decision-maker is risk neutral and when

choosing the act the decision-maker acts as a Bayesian, with full knowledge of their optimal decision process,

and chooses to maximize their expected payoff. To simplify matters, we also assume that there is no

discounting.

In order to simplify our analysis we suppose the decision-maker has commitment power, and so commits

to a ζ ex-ante. Given the prior ψ, and a strategy ζ the total cost of this strategy is given by:

C(ζ) =

T∑
t=1

D∑
d=1

cd · ytd(ζt) +
T∑

t=1

t∑
τ=1

cs · ztτ (ζt) (1)

In period T +1, given a realized bet bd,k and a belief βt
d(ϕ,R

T+1,MT+1) the agent chooses between ad,0

and ad,1. The expected payoff is then

E[B(ζ)] = E[max{ad,0, ad,1}|βt
d(ψ,R

T+1,MT+1)] (2)

Thus, the optimization problem the decision-maker faces is then given by:

max
ζ
E[B(ζ)]− E[C(ζ)]

3.2 Results

The model we have presented can give nuanced and complicated optimal memory rules depending on the

circumstances. The goal in this paper is to highlight two relatively simple implications of the model, which

don’t require us to specify the entire optimal policy for all possible parameter combinations. We provide

sufficient conditions on the environment so that either one of two things happen: in one set of environments

the decision-maker will only focus on keeping track of posterior beliefs over states, and not remember signals

between periods, while in other set of environments they will do the opposite. We do not claim (and in fact
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have numerous counterexamples) that these are the only two kinds of policies that a decision-maker would

use. Rather we want to highlight the fact that the decision-maker responds to incentives in the environment,

and then look for traces of these responses in the data.

We begin with the proposition that is somewhat easier to state. It says that, fixing a number of signals,

we can make the bets important enough, and have enough dimensions and enough uncertainty about which

dimension will be bet on, that that the decision-maker never updates their posteriors, but will remember

some signals.

Proposition 1 There exists a T̄ , D̄, a ¯m(q) and a L̄ such that for all problems q, L, T , where T ≤ T̄ , D ≥ D̄,

m(q) ≤ ¯m(q) and L ≥ L̄, for every t ≤ T

• for all t Rt = ∅, and

• for some τ ≤ t− 1 and st mt
τ = mt−1

τ and mt
t = st.

Proof:

In order to prove the result, set T̄ = 1. First we will show that if the agent, if they do not have the

option of remembering posterior beliefs, but only signals, would want to remember the signal. Then we will

show that the agent will want to remember the signal and not posterior beliefs.

1. The cost of remembering the signal is cs. This means that the cost of remembering the single signal

from t = 1 to t = 2 (the time when the bet is realized and chosen) is then cs. Suppose the realized

bet is on dimension d̂. Consider a given history of signals h. Conditional on remembering the signal,

and given the realized bet, denote the posterior belief used for betting as Bd̂(h). Given L, this pays

off a value Zd̂(h) = Lmax{Bd̂(h), 1 − Bd̂(h)}. Taking the expectation over the different signals and

bets gives an expected benefit of
∑

h

∑
d

∑
Zdq(d)f(h), where f is the ex-ante probability of history

h. Notice that this is bounded below by 1
2L, and is independent of the number of dimensions or the

distribution over bets. We can set L large enough so that this exceeds cs. Thus the agent would choose

to remember the signals if that was the only possibility. The total utility from remembering signals is

bounded below by 1
2L− cs.

2. Let the number of dimensions go to infinity. Let m(q) go to 0. Then the benefit of remembering the

posterior attached to any given state is bounded above by m(q)L. The total utility from remembering

the posterior for this dimension (and not remembering ths signal) would be m(q)L − cd. We can

construct m(q) small enough so that this is always negative. Thus, the agent would never want to

remember the posteriors attached to any state. □

Thus, if it is important to have as much information about the states of the world as possible, and there

are relatively few signals, but a lot of uncertainty about what kind of bet will be given, then signals will be
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remembered, but states won’t. Importantly, at least some signals will be remembered, but potentially not

all.4

The next proposition is more nuanced. It says that that we can find a scenario where the decision-maker is

certain enough about what bet they will face, but where there are enough signals, and the bets are important

enough so that by the end of the sequential information acquisition process: (i) the decision-maker doesn’t

choose to remember any signals, but (ii) updates and remembers posteriors over a subset of the states of the

world.

Proposition 2 There exists ¯m(q), T̄ and L̄ so that for all problems q, L, T where m(q) ≥ ¯m(q), T ≥ T̄ ,

L ≥ L̄, there exists a T̃ < T such that for every t ≥ T̃ :

• τ ≤ t, (m, τ) = (∅, τ),

• for at least one d, ρt+1
d = βt

d(ψ,R
t, st) and d ∈ Rt+1 (unless ρt+1

d = ψd).

Proof: We prove the result for m(q) = 1 so that the decision-maker knows for sure which bet they will

face. Call the dimension that the bet will be on d̂. This immediately implies that the decision-maker only

cares about their posteriors over dimension d̂. The proof happens in several steps. First we show that the

decision-maker prefers to remember the relevant (the one attached to d̂) posterior in all periods rather than

some subset (including no periods), if signals are never remembered. Second we show that the decision-maker

would find it worse to remember all signals than the relevant posterior in all periods. Third, we show that

the agent, if they remember posteriors, need not remember the signals. Fourth, we show it is sub-optimal

for the agent, once they begin to remember the posterior, to stop remembering the posterior in any future

period. Last, we show that at some point it is cheaper to remember the posterior than the signals.

1. We will first compare a feasible strategy, remembering all the information from all periods (via posteri-

ors), to a counterfactual strategy, which isn’t actually feasible. We compute a strategy where the agent

remembers the information acquired from a strict subset of periods T, where the cost of remembering

the information for a given period is c = min{cd, cs}. This gives a total cost of remember of cT. Notice

that this cost isn’t necessarily achievable, but it presents a useful counterfactual, as it is weakly lower

than either the costs of remembering the information from T via either posteriors or signals.

Denote the posterior for dimension d̂ (since this is the only relevant dimension) after observing all

signals given a history h as Bd̂(h). Denote the posterior after remembering a subset of signals from

periods T ⊂ T as BT
d̂
(h). Given L, the former pays off a value Zd̂(h) = Lmax{Bd̂(h), 1 − Bd̂(h)}

and the latter ZT
d̂
= Lmax{BT

d̂
(h), 1 − BT

d̂
(h)}. Taking expectations over histories (remember there

is only a single dimension we are concerned about) we get an expected value of
∑

h Zd̂f(h) (recall

f(h) denotes the distribution over histories from an ex-ante perspective) and
∑

h Z
T
d̂
f(h). Denote the

4This should not be surprising. Consider a sophisticated decision-maker who always faces a binary signal realization, either

red or blue. By only remembering when red happens, they know that all “empty” memories are blue, and so can recall the

entire sequence of memories. Moreover, there are values of L where “strong” signals would be remembered but not weak ones

(which would all pool together as unremembered).
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difference between these two, for a given T as m(T (recall m is runic m). Notice that m(T is positive

and increasing (without bound) in L. This implies that for large enough L, m(T−cdT −cT) is positive,

implying that the decision-maker prefers to remember the posterior attached to d̂ in all periods rather

than the information from some subset of periods.

2. Next we show that the agent wouldn’t want to remember all signals in all periods. If the agent remem-

bers all signals, they would never remember any posteriors. The payoff is the same from remembering

the posterior every periods, but the costs are bounded below by cs
T (T+1)

2 , which for any fixed cs, cd

must eventually be larger than cdT for a large enough T .

So we have now established that the agent prefers to remember information for all periods (via remem-

bering posteriors) to remembering information from only a subset of periods.

Now we just need to show that there exists some t such that after t the agent will only remember posteriors

and not remember signals.

3. If the agent remembers their posterior in Period t, they have no need to remember any signals that

Period. Notice that all information relevant for the bet is contained in the posterior.

4. If the agent has remembered only the posterior in the past period, then they must remember the

posterior this period, or they will lose information (unless the posterior is exactly equal to the initial

prior ψd̂ in which case the decision-maker acts “as if” they remembered the posterior, even though

they didn’t, which as we showed in the first step, is suboptimal.

5. Consider an agent in time period t, who currently remembers all signals up to time period t. The cost

of remembering all signals to the next period is cst. The cost of remembering the posterior is cd. For

large enough t′ the former is larger than the latter. Moreover, for all t′′ ≥ t′ it is also less costly to

simply remember the posterior (which contains all information) than remember the signals (which also

contain all information). Therefore, at time t, the agent will strictly prefer to remember the posterior

for all periods moving forward,

Therefore, for t large enough, the agent will begin to remember the posterior, and only remember the

posterior after that. Thus, we just need to ensure that T̂ > t′. □

This proposition points out that if it is important to have as much information about the states of the

world as possible, and there are relatively few states that matter compared to the total number of signals,

then the decision-maker remembers posterior beliefs and not individual signals.

It is relatively clear that if the agent’s posterior in any given period is equal to the initial prior, it is

optimal to not remember the posterior, and simply start over the with prior. However, there are L’s where

it is optimal for the agent to remember the posterior so long as it is far enough from the initial prior, and

otherwise forget the posterior, and pool on the initial prior.5

5This is because, if the current posterior is close enough to the initial prior, then the fix cost of remembering the posterior

for a period outweighs the gain in information in moving from the prior to the posterior. Notice however, though that as the
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Of course, the proposition does not say that the agent would only remember posteriors the entire process.

It only says that by the end of the process the agent is only remembering posteriors. This is because if the

cost of remembering a single signal is relatively small compared to the cost of remembering a posterior, the

agent may want to initially only remember signals. Once there are enough signals such that the costs of

remembering all the signals becomes prohibitive, the agent will aggregate all the signals into a posterior, and

then remember posteriors forever after. Thus, it is key that there are enough signals, relative to the cost

differential between remembering signals and posteriors, in order for the proposition to hold true.

One might wonder under what circumstances a stronger result would be true — where the decision-maker

always remembers the posteriors across all periods. One situation is where there is a single dimension that

will be bet on, and where the cost of remembering a posterior is the same as remembering a signal. More

generally, albeit not surprisingly, we can find a small enough cost of cost of remembering a posterior relative

to a signal (fixing all other parameters), so that an individual will only remember posteriors.

3.3 Extensions

One natural extension is to ask is whether, e.g., Proposition 1 could be extended to say that for any given

T , we can find high enough incentives, and enough uncertainty about which question will be asked, so

that only signals will be remembered. The answer, not surprisingly, is yes. Regardless of the uncertainty

about the questions, so long as the benefit from guessing correctly is high enough, the agent wants to have

all information available. However, the return to knowing about any given dimension is low enough when

there is much uncertainty about what the bet is, so that the cost for remembering is lower for signals than

posteriors. The answer, however, for the equivalent generalization for Proposition 2 (fixing a q) is different.

This is because some signals might provide information about lots of potential bets. If these signals are

sufficiently rare, it is better to simply remember them when they occur, rather than incorporating them into

posteriors.

A second extension is to consider what happens if there is a fixed cost of Bayesian updating – every time

the agent wants to combine a signal with a belief, they have to pay a cost. Again, this will not influence

Proposition 2, but will change Proposition 1. In particular, this will also lead to “batch” processing of

signals, where it could be that the decision-maker remembers both posteriors and signals for a time, and

then turns all the signals into a posterior, forgets them, and then starts the process over.

A third extension would relax the assumption that either the decision-maker remembers for sure, or forgets

for sure. In reality it is likely that a decision-maker can only choose a probability of remembering, where

higher probabilities incur higher costs. In this case, the agent may have an incentive to not just remember

current posteriors, but also past signals, as mis-remembered posteriors may be corrected by remembered

signals. Moreover, an agent may even want to remember not just their most current posterior, but also past

cost of remembering a posterior goes to 0, the set of posteriors that are not remembered converges to the empty set. Of course,

this may lead to the agent, as a sophisticated Bayesian updater, may actually learn something if they enter a period only

remembering the initial prior (because they know their posterior beliefs from the previous period must be withing the set that

wouldn’t be remembered. This implies their Bayes update may not be the same as if their if their true beliefs are the initial

prior.
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posteriors.

4 Experimental Design

4.1 Design

Our experimental design is motivated by several objectives: 1) the setting should present clearly defined

“chunks” of information to subjects in a sequential manner; 2) the setting should allow for easy variation of

the environment (number of signals and decision-relevant dimensions); 3) the environment should be neutral

to avoid motivated reasoning/memory in any form; and 4) the setting should allow for the elicitation of

beliefs and the memory of signals. This leads to the following guessing task.

Guessing task. The guessing task has three dimensions, with two equally likely states in each dimension.

Subjects receive noisy hints that are simultaneously informative for all three dimensions. The task is framed

to subjects as the selection of three people that jointly determine the winning numbers for a local raffle.

There are three teams, Team ‘Parity’, Team ‘Round’ and Team ‘Size’, with two members each. One member

from each team is randomly selected with equal chance. Together the three selected people decide on

multiple numbers in the range from 1 to 100. People from each of the three teams have different preferences

over certain numbers. Members of Team ‘Parity’ like even/odd numbers, members of Team ‘Round’ like

round/irregular numbers (i.e. divisible by 5 or not) and members of Team ‘Size’ like high/low numbers (i.e.

greater than 50 or not). All three people makes sure that on average 75% of winning numbers are according

to their preference. As an example, a hint may look as follows: ‘The first winning number chosen by the

three randomly selected people is: 12’. The complete description, as shown to subjects, can be found in

Appendix B. Subjects are shown multiple signals, each followed by a short distraction task. The distraction

task is explained in more detail below.

Treatments. We compare the behavior of subjects in two treatments with different environments. The

two treatments differ in two ways: first, the number of signals that are shown to subjects and second, the

number of potential questions subjects could be asked at the end. In the treatment ‘posterior’ subjects

are shown 14 signals and they are told that their task is to guess which person from Team ‘Parity’ was

selected based on the hints they have seen. Subjects in the treatment ‘signals’ are shown 4 signals. They

are specifically told that their task is to answer one of three potential questions at the end. Any one of the

three dimensions (i.e. teams) is equally likely to be selected as the question at the end. Participants of the

experiment are randomly allocated to one of the two treatment conditions.

Elicitation. Eliciting whether subjects keep track of aggregated information in the form of posterior

beliefs or individual signals is the key challenge with the experimental design. Different methods could be

employed that focus on comparing ex-ante preference for difference questions or the ex-post performance of

subjects. The elicitation procedure should fulfill several requirements: 1) elicitation should be incentivized;

2) the procedure should not influence the behavior of subjects during the guessing task and while seeing hints;

3) the elicitation method should not be influenced by the environment, i.e. if the same number of subjects

keep track of posteriors/signals in two different treatments, the outcome should be the same; 4) subject’s
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own (sub-conscious) choice of what to remember should directly affect the outcome of the elicitation method,

i.e. the payment method, description of instructions, the level of the posterior or the signals themselves all

should not influence the elicitation.

These objectives lead to the implementation of the following elicitation procedure. After observing

roughly 75% of all signals, subjects are presented with a surprise question.6 They have to choose which

type of question they would prefer to answer to earn some additional monetary payoff. The two types of

questions are either ‘a question regarding the chance which person from Team ‘Parity’ was selected in the

beginning’ or ‘a question regarding one of the numbers I have previously seen’. This question is purposefully

not announced in the beginning such that the behavior of subjects during the main task is not influenced.

Also, subjects are asked to make a decision before seeing all hints to avoid that subjects have already formed

a posterior anticipating that they need to do so in order to answer the final question. With both types of

questions subjects can earn $8.00.

The benefit of this type of elicitation procedure is that it is easy to to explain to students and simple

to implement. Subjects’ behavior in the experiment should (almost) directly influence their question choice,

i.e. subjects that remembered posterior throughout the experiment should choose the posterior question

and subjects that remembered individual signals should choose the signal question. It could happen that

subjects remembered individual signals and prefer to answer a question regarding the posterior.7 However,

switching in the other direction is not possible.

After subjects select the type of question they prefer to answer, they are immediately presented with this

question. The implementation of the posterior question is comparable to many other belief elicitation tasks

in the literature. Subjects have to select a percentage number from a slider regarding the relative likelihood

of the two outcomes. Subjects are incentivized to report their belief accurately through a binarized scoring

rule with rewards of $8.00 or $0.00. Subjects that instead chose for the signal question are asked about

one randomly chosen number that was previously shown to them. In the language of Kahana (2012) this

method could be considered ‘cued recall’ where the order of numbers acts as a cue for the recall of the signal.

Subjects that correctly recall the signal earn $8.00 while an incorrect response pays no additional bonus.

Finally, after providing an answer to either the posterior or the signal memory question, subjects are asked

to state their confidence (on a scale from 0 to 100) in the accuracy of their answer.

Memory load. After subjects observe a signal (i.e. at the end of every round), they are confronted with a

distraction task, inspired by Deck et al. (2021). This task is purposefully designed to induce a memory load,

making it harder for subjects to perfectly remember every detail of the experiment. The distraction task

consists of two parts, a number memory question and multiple math questions. After explaining the task,

an 8-digit number is shown to subjects for a few seconds. Then, they have 21 seconds to solve up to four

math questions before being prompted to recall the 8-digit number. If subjects correctly recall the 8-digit

6Specifically, in the ’posterior’ treatment this took place after 11 signals and in the ’signal’ treatment after 3 signals.
7Although our theoretical model assumes away any cost of forming a posterior belief from a prior and signal, we recognize

that in reality there is likely a cognitive cost associated with this action. This makes it less likely that subjects switch from

remembering signals to answering a posterior question. In addition, this cost should be similar between the two different

treatments, meaning that treatment differences are unaffected.

15



number they receive $0.50. If subjects correctly answer one randomly selected math question they receive

another $0.50. Figure 4.1 provides an overview of the timeline of the experiment.

Main
instructions

Guessing Task Closing
survey

1) Signal shown

2) Distraction task:

- 8-digit number

- 4 math questions

- recall number

comprehension
check

main
elicitation

final
guess

Treatment variation:

4 or 14 rounds

Figure 1: Timeline of the experiment

4.2 Hypothesis

The results from section 3.2 allow us to define a clear hypothesis regarding the behavior of subjects in the

two treatments of the experiment. Two factors of the environments are varied in the two treatments, the

number of signals and the number of decision-relevant dimensions. Proposition 2 states that, ceteris paribus,

an environment with more signals before an eventual decision implies that more subjects should remember

posterior beliefs rather than individual signals. Proposition 1 states that, ceteris paribus, an environment

with fewer decision-relevant dimensions implies that more subjects should remember posterior beliefs rather

than individual signals. In the two experimental treatments we simultaneously vary both factors.8 The

‘posterior’ treatment has more signals and fewer decision-relevant dimensions than the ‘signals’ treatment

condition. Therefore, the main hypothesis can be summarized as follows.

Hypothesis 1 In the ‘posterior’ treatment more subjects remember posterior beliefs (rather than individual

signals) than in the ‘signals’ treatment.

This hypothesis and the analysis thereof presented in the following section were pre-registered.9

5 Results

This section presents the results from the experiment described above. The experiment was conducted at

Cornell University in fall 2023. 100 subjects completed the experiment (49 in treatment ‘posterior’ and 51

in treatment ‘signals’). Participants are students at Cornell University, mainly American, on average 25

years old, 2/3 are female and most study engineering, business/management, or other (social) sciences. On

average, they took 39 minutes to complete the experiment and they earned $12.59.
8This is done to create a larger potential treatment effect.
9The pre-registration can be accessed here: https://aspredicted.org/NQD_R74.
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Figure 2: Question choice across the two treatments. Error bars show the 95% confidence interval around

the depicted sample mean.

5.1 Main Hypothesis

The main question we investigate in this paper is whether people keep track of an aggregate posterior belief

or individual signals when seeing multiple pieces of information over time. To answer this question we elicit

subjects’ preferences over two different types of questions. We compare two treatments that differ in the

number of signals and the number of potential questions subjects may need to answer.

Figure 2 provides an overview of the frequency with which subjects choose the posterior/signal question

for the two treatments. 73% of subjects choose the posterior question in the ‘posterior’ condition while only

39% of subjects choose the posterior question in the ‘signal’ condition. This difference is highly significant (p-

value from chi-squared test: < 0.001), thus confirming Hypothesis 1. In addition, we estimate the following

logistic regression:

QuestionChoicePosti = α+ β1 · TreatSignali +Xi + ϵ,

where QuestionChoicePost is a dummy variable that is equal to 1 for subjects that chose the posterior

question, TreatSignal is a dummy variable indicating the treatment, and Xi is a set of additional explanatory

variables. We find that, as hypothesized, β1 is negative and significantly different from zero. The regression

output is reported in Table 2 and the corresponding marginal effects of the different explanatory variables

are reported in Table 3.

Result 1 In an environment with more signals and fewer decision-relevant dimensions, more subjects remem-

ber posterior beliefs (rather than individual signals).

We find strong evidence that the setting influences how people process sequential information. In an
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environment with many signals and a clearly defined question, people are significantly more likely to keep

track of a posterior belief rather than individual signals. This implies that subjects rationally react to the

environment when (unconsciously) choosing how to process information.

5.2 Additional Results

In the second part of the analysis we further analyze the accuracy of subject’s answers to the posterior

and signal memory question. We compare the accuracy and confidence of people who indicated that they

remembered posterior beliefs, or individual signals respectively, across the two treatments.

5.2.1 Posterior

This section analyzes the behavior of all subjects who indicated that they remembered posterior beliefs. The

sample is unbalanced between the two treatments as 36 subjects chose the posterior question in the ‘posterior’

treatment while only 20 subjects chose the posterior question in the ‘signal’ treatment. In both treatments,

subjects are asked to indicate their posterior belief as a percentage between 0 and 100 by adjusting a slider

(without default value).

Figure 3: Average reported posterior beliefs and confidence by subjects who chose this question. The red

dashed line indicates the Bayesian posterior given the 11 or 3 previous signals subjects have seen in the

respective treatment.

Figure 3 shows the average reported posterior beliefs by subjects as well as the average level of confidence

in the accuracy of the reported belief across the two treatments. The Bayesian belief report is identical across

the two treatments at 75%. On average, reported beliefs do not significantly differ in the two treatments.

In both treatments, the reported posterior beliefs are on average significantly more conservative than the
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Bayesian posterior. Figure 5 in the appendix provides a more detailed overview of individual belief reports.

Reported confidence regarding the accuracy of their belief report is also not significantly different on average

in the two treatments.

In summary, for subjects that chose to keep track of posterior beliefs we do not observe differences in the

accuracy of their (reported) beliefs or their confidence. It is important to note that these reports are only

from the group of subjects that actively chose the posterior question. It is possible that the group of subjects

that kept track of individual signals would hold different beliefs on average across the two treatments.

5.2.2 Signal Memory

This section analyzes the behavior of all subjects who indicated that they remembered individual signals.

The sample is unbalanced between the two treatments as only 13 subjects chose the signal memory question

in the ‘posterior’ treatment while 31 subjects chose the signal memory question in the ‘signal’ treatment. In

both treatments, subjects are asked about one particular signal they have previously seen. Subjects are not

provided with possible answers to choose from but need to freely recall the number between 1 and 100 that

was shown to them before.

Figure 4: Percentage correct recall of the signal and confidence by subjects who chose this question.

Figure 4 shows the percentage of subjects that correctly recalled the signal, as well as the corresponding

level of confidence across the two treatments. On average subjects recalled the signal with similar accuracy

in the two treatments. This may be somewhat surprising as subjects in the ‘posterior’ treatment have seen

in total 11 signals prior to answering the question, while subjects in the ‘signals’ treatment have only seen 3

signals. In both treatments, the majority of subjects correctly recalled the signal in question providing clear

evidence that some subjects focus on carefully remembering all signals they observe. Reported confidence
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in the accuracy of their recall is slightly higher in the ‘signals’ treatment, though only significant at the 10%

level. It is possible that a larger sample size would lead to a more robust difference.

In summary, in both treatments, the majority of subjects who chose the signal memory question recalls

the specific signal correctly. While reported confidence is (potentially) higher in the ‘signals’ treatment, the

actual recall accuracy is similar.

5.3 Distraction Task

After each signal, subjects are shown a distraction task consisting of a number memory question and multiple

math question. This section provides an analysis of subjects’ behavior in the two distraction tasks. The

results show that subjects were fully engaged with the experiment and fatigue or other effects of time are

unlikely to have impacted the treatment differences observed earlier.

We compare two aspects of the distractions task over time and across treatments: attempted solves and

correct answers. First, we focus on attempted solves by subjects. A distraction task is considered to have

been attempted if a subject provides any (potentially false) answer. Attempted solves are relevant as they

provide an indication that the distraction task indeed created a mental load on subjects after each signal.

Figure 6 in the appendix provides an overview of subjects’ behavior. We find that nearly all subjects provide

an answer for either the memory or the math tasks, and most for both. Moreover, subjects remain highly

engaged with the distraction tasks until the end of the experiment and there are not differences in behavior

across the two treatments. This provides evidence that fatigue and other undesired round effects are unlikely

to have an effect on behavior in our main study.

Second, we analyze the actual performance of subjects in the distraction tasks. Figure 7 provides an

overview of the number of correctly solved memory tasks per subject and Figure 8 provides an overview of

the number of correctly solved math tasks per subject. We find that subjects differ substantially in their

performance in the two distraction tasks. While few subjects answered no question in either the memory

or the math task correctly, some subjects answered nearly all questions correctly. Again, it appears that

performance of subjects across treatments (relative to the number of tasks they have seen) is similar.

6 Conclusion

In this paper we test what type of information people keep track of in problems with sequential learning of

information. We show that individuals flexibly adjust what kinds of information they choose to remember.

We show both theoretically and experimentally that decision-makers rationally adjust their memory strategy

to the environment. In environments with relatively many signals and a clearly defined task people remember

posteriors, while in settings with relatively few signals and uncertainty about the final decision people

remember signals. This provides a foundation for understanding when different assumptions about bounded

memory apply. In particular, we demonstrate that the two assumptions frequently made in the literature,

that either people remember only posterior beliefs or they only remember individual signals, can both be

rationalized in different environments.
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A Tables and Figures

A.1 Literature

Paper T/E? Constraint Context

Assumption: Remember posterior belief(s)

Cover and Hellman (1970) t finite memory states
2 states of the world,
question known,
potentially many signals

Dow (1991) t finite memory states
finite (ordered) states,
question known,
potentially many signals

Monte (2005) t finite memory states
2 states of the world,
question known,
potentially many signals

Kocer (2010) t finite memory states

2 states of the world,
question known,
potentially many signals,
decision each period

Monte and Said (2010) t finite memory states

2 states of the world,
question known,
potentially many signals,
decision each period

Monte (2013) t finite memory states
2 states of the world,
question known,
potentially many signals

Monte (2014) t finite memory states
2 states of the world,
question known,
potentially many signals

Wilson (2014) t finite memory states
2 states of the world,
question known,
potentially many signals

Benjamin (2019) e not modelled
2 states of the world,
question known,
varied other context

Chatterjee et al. (2022) t finite memory states
2 states of the world,
question known,
potentially many signals

Chatterjee and Hu (2023) t finite memory states
2 states of the world,
question known,
potentially many signals

Hu (2023) t finite memory states
2 states of the world,
question known,
potentially many signals

Assumption: Remember signals

Mullainathan (2002) t selective recall
based on similarity

question known ex-ante?
potentially many signals
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Paper T/E? Constraint Context

Bénabou and Tirole (2004) t imperfect memory
with potential manipulation

Finite ordered states of the world
1 signal
motivated reasoning

Gottlieb (2014) t imperfect memory
with potential manipulation

Finite ordered states of the world
1 signal
motivated reasoning

Chew et al. (2020) t imperfect memory
with potential manipulation

Finite ordered states of the world
1 signal
motivated reasoning

Fudenberg et al. (2022) t selective recall

Finite states
potentially many signals
decision each period
motivated reasoning

Graeber et al. (2022) e memory with decay

2 states of the world,
1 signal,
1 question known ex-ante,
3 tasks simultaneously

Neligh (2022) t memory with decay
Finite states,
potentially many signals,
decision each period

Bordalo et al. (2023) t&e selective recall
based on similarity

question not known ex-ante,
many signals (40)

Enke et al. (2023) e selective recall
based on context similarity

between 0 and 3 signals,
1 question known ex-ante,
ordered states,
12 tasks simultaneously

Leung (2023) e imperfect recall
2 (or more) states of the world,
few/many signal,
question not known ex-ante

Wachter and Kahana (2023) t selective recall
based on similarity

finite states,
question not known

Endogenous: Posterior beliefs or signals

Da Silveira et al. (2020) t memory cost
based on complexity

Finite ordered states of the world,
question known,
potentially many signals,
decision each period

Table 1: Overview of literature on sequential information processing (with memory constraints). We include

different papers in which a single decision maker receives several noisy signals about some state of the world

over time. Papers are classified according to whether decision-makers are assumed to remember posteriors

beliefs (i.e. summary statistics about states), signals, or can choose. The first column provides the paper, the

second classifies the contribution as theoretical (t) or empirical (e), the third describes the memory constraint,

and the final provides the additional context of the decision environment. For additional discussion please

see Section 2.
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A.2 Main Hypothesis

Dependent variable:

Question Choice: Posterior

Constant 2.324∗∗

(1.022)

Treatment: Signals −1.737∗∗∗

(0.626)

Distraction: Math tasks solved −0.046∗∗

(0.023)

Distraction: Memory tasks solved −0.016

(0.070)

Duration 0.004

(0.014)

Button clicked: Posterior question 0.816

(0.508)

Button clicked: Posterior q. - scoring rule 1.353∗∗∗

(0.464)

Button clicked: Signal question −1.636∗∗∗

(0.496)

Gender: Male 0.484

(0.384)

Gender: Other −0.050

(1.036)

Age 0.004

(0.018)

Use of Hints 0.014∗

(0.007)

Remembering Every Hint −0.010

(0.007)

Remembering Easy −0.376

(0.305)

Updating Extent 0.001

(0.006)

Updating Easy −0.324

(0.267)

Observations 100

Log Likelihood −46.128

Akaike Inf. Crit. 124.256

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 2: Probit Regression Output
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Variable Name Marginal Effect SE P value

Treatment: Signals -0.46 0.13 0.00

Distraction: Math tasks solved -0.01 0.01 0.03

Distraction: Memory tasks solved -0.00 0.02 0.82

Duration 0.00 0.00 0.77

Button clicked: Posterior question 0.19 0.10 0.06

Button clicked: Posterior q. - scoring rule 0.33 0.09 0.00

Button clicked: Signal question -0.43 0.10 0.00

Gender: Male 0.12 0.09 0.19

Gender: Other -0.01 0.27 0.96

Age 0.00 0.00 0.84

Use of Hints 0.00 0.00 0.05

Remembering Every Hint -0.00 0.00 0.14

Remembering Easy -0.10 0.08 0.21

Updating Extent 0.00 0.00 0.92

Updating Easy -0.08 0.07 0.22

Table 3: Marginal effects from the regression output reported in Table 2

A.3 Additional Results

27



Figure 5: Histogram of reported posterior beliefs, split by treatment. The dashed line at 75% indicates the

Bayesian posterior belief.

A.4 Distraction Task
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Figure 6: Mean attempts for the math and memory distraction tasks over time, split by treatment.

Figure 7: Histogram of correct answers in the memory distraction tasks over time, split by treatment. Note

that the maximum number of correct answers is 14 for treatment ‘posterior’ and 4 for treatment ‘signals’.
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Figure 8: Histogram of correct answers in the math distraction tasks over time, split by treatment. Note

that the maximum number of correct answers is 56 for treatment ‘posterior’ and 16 for treatment ‘signals’.

B Instructions and Screenshots

B.1 Instructions - Treatment ‘Posterior’

A group of people is tasked with selecting several winning numbers for a local raffle. The group is composed

of members from three different teams. One person from each team is randomly selected (all with equal

chance). Below are the three teams and their members:

Team names Members

‘Size’ Hugh & Loa

‘Parity’ Eve & Todd

‘Round’ Iris & Ron

All three selected people meet up and together select the winning numbers. The selected numbers will be

shown to you.

Your task:

At the end, after seeing all numbers, you will be asked: Based on the numbers you have seen, guess which

person from Team ’Parity’ was randomly selected.

Hints:

Together the three selected people choose 14 different numbers between 1 and 100. Each person likes some
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numbers more than others. Together they make sure that everyone likes the 14 chosen numbers. These 14

numbers will be shown to you.

Below you can find more information about the team members and the numbers they like to select:

Team ’Size’ Team ’Parity’ Team ’Round’

Hugh Loa Eve Todd Iris Ron

Hugh likes high

numbers

(51, ..., 100)

Loa likes low

numbers

(1, ..., 50)

Eve likes even

numbers

(2, 4, ..., 100)

Todd likes odd

numbers

(1, 3, ..., 99)

Iris likes irregular

numbers, i.e.

not divisible by 5

(1, 2, ..., 99)

Ron likes round

numbers,

i.e. divisible by 5

(5, 10, ..., 100)

On average,

75% of

numbers

selected by

groups with

Hugh are high,

and 25% are

low.

On average,

25% of

numbers

selected by

groups with

Loa are high,

and 75% are

low.

On average,

75% of

numbers

selected by

groups with

Eve are even

and 25% are

odd.

On average,

25% of

numbers

selected by

groups with

Todd are even

and 75% are

odd.

On average,

75% of

numbers

selected by

groups with

Iris are

irregular and

25% are round.

On average,

25% of

numbers

selected by

groups

with Ron are

irregular and

75% are round.

Example hint: ‘The [first] winning number chosen by the three randomly selected people is: [23]’

Remember:

At the end, after seeing all numbers, you will be asked: Based on the numbers you have seen, guess which

person from Team ’Parity’ was randomly selected.

B.2 Instructions - Treatment ‘Signals’

A group of people is tasked with selecting several winning numbers for a local raffle. The group is composed

of members from three different teams. One person from each team is randomly selected (all with equal

chance). Below are the three teams and their members:

Team names Members

‘Size’ Hugh & Loa

‘Parity’ Eve & Todd

‘Round’ Iris & Ron

All three selected people meet up and together select the winning numbers. The selected numbers will be

shown to you.

Your task:
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At the end, after seeing all numbers, you will be asked one of the three questions below.

Based on the numbers you have seen. . .

• . . . guess which person from Team ‘Size’ was randomly selected, or

• . . . guess which person from Team ‘Parity’ was randomly selected, or

• . . . guess which person from Team ‘Round’ was randomly selected.

All three questions are equally likely to be selected.

Hints:

Together the three selected people choose 14 different numbers between 1 and 100. Each person likes some

numbers more than others. Together they make sure that everyone likes the 14 chosen numbers. These 14

numbers will be shown to you.

Below you can find more information about the team members and the numbers they like to select:
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Team ’Size’ Team ’Parity’ Team ’Round’

Hugh Loa Eve Todd Iris Ron

Hugh likes high

numbers

(51, ..., 100)

Loa likes low

numbers

(1, ..., 50)

Eve likes even

numbers

(2, 4, ..., 100)

Todd likes odd

numbers

(1, 3, ..., 99)

Iris likes irregular

numbers, i.e.

not divisible by 5

(1, 2, ..., 99)

Ron likes round

numbers,

i.e. divisible by 5

(5, 10, ..., 100)

On average,

75% of

numbers

selected by

groups with

Hugh are high,

and 25% are

low.

On average,

25% of

numbers

selected by

groups with

Loa are high,

and 75% are

low.

On average,

75% of

numbers

selected by

groups with

Eve are even

and 25% are

odd.

On average,

25% of

numbers

selected by

groups with

Todd are even

and 75% are

odd.

On average,

75% of

numbers

selected by

groups with

Iris are

irregular and

25% are round.

On average,

25% of

numbers

selected by

groups

with Ron are

irregular and

75% are round.

Example hint: ‘The [first] winning number chosen by the three randomly selected people is: [23]’

Remember:

At the end, after seeing all numbers, you will be asked one of the three questions below.

Based on the numbers you have seen. . .

• . . . guess which person from Team ‘Size’ was randomly selected, or

• . . . guess which person from Team ‘Parity’ was randomly selected, or

• . . . guess which person from Team ‘Round’ was randomly selected.

B.3 Instructions - Comprehension Questions (both treatments)

To make sure you correctly understood the instructions for the main task, please answer the following 4

questions. You can read the instructions once more by clicking on the button below:

[Button: ‘Show/hide instructions’]

If you answer 2 or more questions incorrectly you will not be eligible for a bonus payment in this study.

You will only be able to proceed once you answer all questions correctly. Otherwise you will be shown the

instructions once again.

Which people are selected to decide the winning numbers for the local raffle?

• 3 out of the 6 are randomly selected.
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• 3 are randomly selected, one from each team.

• The winning numbers are chosen randomly, the people do not matter.

Suppose the three selected people are: Hugh, Todd and Ron. Which types of numbers are more likely to be

winning numbers? Numbers that are:

• Low, odd and irregular.

• High, even and round.

• Low, even and round.

• High, odd and round.

In the end I will be asked to guess...

• ...which person from Team ’Size’ was selected.

• ...which person from Team ’Parity’ was selected.

• ...which person from Team ’Round’ was selected.

• One of the 3 questions above will be randomly selected.

How many winning numbers will be shown to me?

• 4

• 9

• 14

[Page break]

The correct answers are:

1. 3 are randomly selected, one from each team.

2. High, odd and round.

3. [T1:] ...which person from Team ’Parity’ was selected. / [T2:] One of the 3 questions above will be

randomly selected.

4. [T1:] 14 / [T2:] 4

B.4 Signals

The complete list of signals for treatment 1: 12, 7, 84, 37, 62, 75, 60, 8, 34, 9, 35, 88, 21, 30.

The complete list of signals for treatment 2: 12, 7, 84, 37.
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Figure 9: Example signal as shown to subjects.

B.5 Question choice

Chance for additional payoff - your choice:

Before the experiment continues you have the chance to earn some additional money. You can choose which

type of question you prefer to answer. You have the choice between two options:

• A question regarding the chance which person from Team ‘Parity’ was selected in the beginning:

[Button: ‘Details’]

You will be asked to state the chance (in %) with which you think Eve/Todd was selected from Team

‘Parity’. Your bonus payment (either $8.00 or $0.00) depends on the accuracy of your answer. The more

accurate your answer is, the higher your expected payoff. Example: ‘Based on the hints you received

so far, what is the chance (in %) that Eve was randomly selected from Team ‘Parity’ in the beginning?’

[Button: ‘Formula’]

You will receive the bonus payment of $8.00 with some probability that depends on your report. The

probability is calculated according to the following formula: 1 − (error)2, where the error is the difference

between your reported percentage and 100% if Eve was selected and 0% if Todd was selected.

You can maximize your expected earnings by reporting what you truly think the chances are that Eve was

selected from Team ’Parity’ in the beginning.

[End button: ‘Formula’]

[End button: ‘Details’]

• A question regarding one of the [T1:] 11 / [T2:] 3 numbers you have previously seen: [Button: ’Details’]

[Button: ‘Details’]

You will be asked to recall one of the [T1:] 11 / [T2:] 3 winning numbers that was shown to you so far.

Example: ‘What was the [third] winning number selected by the group of people?’ One of the numbers you

saw so far is randomly selected for this question. If your answer is correct you will receive $8.00, otherwise

you will receive $0.00.

[End button: ‘Details’]

Please select one of the two options below. This will be the type of question asked to you on the next page.

With either type of question you can earn an additional payoff of $8.00 depending on your answer to the

selected question.
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• A question regarding the chance which person from Team ’Parity’ was selected in the beginning.

• A question regarding one of the numbers I have previously seen.

[Question regarding chance:]

Figure 10: Posterior question

Figure 11: Confidence in reported posterior (not incentivized)

[Question regarding one of the numbers:]

Figure 12: Elicitation of signal memory
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Figure 13: Confidence in memory of signal (not incentivized)

B.6 Distraction Task

The distraction task is shown to subjects immediately after each signal. It includes a number memory task

and four simple calculation questions. Each time subjects are shown the instructions. The following four

pages are shown to subjects in sequence.

Figure 14: Instructions for distraction task

Figure 15: First part of memory distraction task
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Figure 16: Math distraction task

Figure 17: Second part of memory distraction task

B.7 Post-experiment survey

[First page]

What is your gender?

Options: Female; Male; Other

What is your age? Please enter the number below.

What country were you born in? Please select the country name below.

What is the main field of study for your undergraduate degree?

Options: Management/Business; Economics; Humanities; Liberal Arts; Education; Engineering; Science;

Social Science; Agriculture; Pharmacy; Nursing; Other

What is your GPA?

Options: 3.5-4.0; 3.0-3.5; 2.5-3.0; 2.0-2.5; Below 2.0

Are you an undergraduate student (which year) or a graduate student?

Options: First year; Second year; Third year; Fourth year or above; Graduate student

What is your SAT score? Please enter the number as best as your remember below.
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[Second Page]

On this page you will be asked a few questions regarding your behavior and strategy in this survey.

You saw several numbers that provided information about which people were selected in the beginning. To

what extent were you trying to use the information contained in these hints?

0: I did not use the information at all.

100: I used all the information contained in the hints.

[slider]

To what extent were you trying to remember every number shown to you?

0: I did not try to remember each individual hint.

100: I tried to perfectly keep track of all hints and the dates.

[slider]

Did you think it was difficult to keep track of the numbers?

Options: Very difficult; Somewhat difficult; Somewhat easy; Very easy

After seeing each number, to what extent were you trying to keep track of which people were selected in the

beginning?

0: I did not keep track at all of which people I thought were selected.

100: I tried to keep track precisely of which people I thought were the selected one(s).

[slider]

Did you think it was difficult to keep track of which people were the selected one(s)?

Options: Very difficult; Somewhat difficult; Somewhat easy; Very easy

You could choose between two questions to earn an additional payoff after several numbers were shown to

you. You chose for: ‘XX’. Why did you choose this question? Please explain your thought process as clearly

as possible.

Do you have any general feedback regarding this survey? Was there anything that you did not fully under-

stand or should be improved in the future?

[Final page]

Payoff Summary
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Show up fee:

Payoff from math questions:

Payoff from number memory questions:

Payoff from main game:

Total:

Please record this number on your payment sheet and come to the front.
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