Optimal Memory with Sequential Learning: Signals or Posterior Beliefs

Lars Wittrock (joint with Collin Raymond)
December 7, 2023
Maastricht University

Feedback

This project is work in progress.

Any feedback is very welcome. Especially:

- Additional papers we should cite?
- Is the theoretical model clear?
- Many extensions are possible. Which is the most interesting?

Introduction

Motivation

Problems with sequential learning:

- Judging unfair coins (Cover and Hellman, 1970),
- Estimate flood risk based on experiences (Bordalo et al., 2023),
- Financial analyst forecasting a stock's performance,
- Homicide detective investigating suspects,

Motivation

Problems with sequential learning:

- Judging unfair coins (Cover and Hellman, 1970),
- Estimate flood risk based on experiences (Bordalo et al., 2023),
- Financial analyst forecasting a stock's performance,
- Homicide detective investigating suspects,

Role of memory:

- Memory of information is essential ...
- ... but memory capacity is limited! (Miller, 1956; Cowan, 2010, ...)

Motivation

Problems with sequential learning:

- Judging unfair coins (Cover and Hellman, 1970),
- Estimate flood risk based on experiences (Bordalo et al., 2023),
- Financial analyst forecasting a stock's performance,
- Homicide detective investigating suspects,
- ...

Role of memory:

- Memory of information is essential ...
- ... but memory capacity is limited! (Miller, 1956; Cowan, 2010, ...)
\rightarrow What information do people keep track of?

Motivation

Economic models:

- Traditional theory (e.g. multi-armed bandit problems, Wald sequential testing, etc)
- People remember (posterior) beliefs
- Update beliefs sequentially
- Recent behavioral models (e.g. belief formation, etc)
- People remember individual signals
- Form a posterior belief only when prompted

Motivation

Economic models:

- Traditional theory (e.g. multi-armed bandit problems, Wald sequential testing, etc)
- People remember (posterior) beliefs
- Update beliefs sequentially
- Recent behavioral models (e.g. belief formation, etc)
- People remember individual signals
- Form a posterior belief only when prompted

Consequence:

- 'Rational’ decision maker: equivalent
- Boundedly rational DM: can lead to different final beliefs/choices

This project

Research Question: How do people process sequential information?

- Do people keep track of posterior beliefs or individual signals?

This project

Research Question: How do people process sequential information?

- Do people keep track of posterior beliefs or individual signals?

Preview: Context of the situation matters!

- If signals are easy to keep track of: remember signals
- If posteriors are easy to keep track of: remember posteriors

Context matters

Two examples:

- Financial analyst
- Task: forecast whether stock increases in value
- Information: large number of data sets
- Clear task and many signals \rightarrow remember posterior
- Homicide detective
- Task: assess probability of guilt for different suspects
- Information: few clues
- Less certain task and few signals \rightarrow remember signal

Context matters

Two examples:

- Financial analyst
- Task: forecast whether stock increases in value
- Information: large number of data sets
- Clear task and many signals \rightarrow remember posterior
- Homicide detective
- Task: assess probability of guilt for different suspects
- Information: few clues
- Less certain task and few signals \rightarrow remember signal

Focus on two dimensions:

- Uncertainty about decision-relevant dimension
- Number of signals

Literature

Related literature

- Memory limitations
- Memory capacity is limited
(Miller, 1956; Cowan, 2010; Ericsson and Kintsch, 1995; Oberauer et al., 2016)
- People optimize how they use their memory
(Miller, 1956; Bays and Husain, 2008; Ma et al., 2014; Brady et al., 2009)

Related literature

- Memory limitations

- Memory capacity is limited
(Miller, 1956; Cowan, 2010; Ericsson and Kintsch, 1995; Oberauer et al., 2016)
- People optimize how they use their memory
(Miller, 1956; Bays and Husain, 2008; Ma et al., 2014; Brady et al., 2009)
- Different assumptions with sequential learning
- People remember posterior beliefs
(Cover and Hellman, 1970; Wilson, 2014; Monte, 2005; Monte and Said, 2010;
Monte, 2013, 2014; Chatterjee et al., 2022; Chatterjee and Hu, 2023; Hu, 2023; Dow, 1991; Benjamin, 2019)
- People remember individual signals
(Mullainathan, 2002; Bordalo et al., 2023; Neligh, 2022; Wachter and Kahana, 2023;
Enke and Zimmermann, 2019; Graeber et al., 2022; Bénabou and Tirole, 2002;
Bénabou and Tirole, 2004; Chew et al., 2020; Fudenberg et al., 2014; Leung, 2023)

Related literature

- Memory limitations

- Memory capacity is limited
(Miller, 1956; Cowan, 2010; Ericsson and Kintsch, 1995; Oberauer et al., 2016)
- People optimize how they use their memory
(Miller, 1956; Bays and Husain, 2008; Ma et al., 2014; Brady et al., 2009)
- Different assumptions with sequential learning
- People remember posterior beliefs
(Cover and Hellman, 1970; Wilson, 2014; Monte, 2005; Monte and Said, 2010;
Monte, 2013, 2014; Chatterjee et al., 2022; Chatterjee and Hu, 2023; Hu, 2023; Dow, 1991; Benjamin, 2019)
- People remember individual signals
(Mullainathan, 2002; Bordalo et al., 2023; Neligh, 2022; Wachter and Kahana, 2023;
Enke and Zimmermann, 2019; Graeber et al., 2022; Bénabou and Tirole, 2002;
Bénabou and Tirole, 2004; Chew et al., 2020; Fudenberg et al., 2014; Leung, 2023)
- Information memory
- Econ Theory: Posteriors are optimal (Da Silveira et al., 2020)
- Neuroscience: Signals (and posteriors) are remembered (d'Acremont et al., 2013; Shadlen and Shohamy, 2016)

Theory

Model Overview

Environment

- Uncertain state of the world
- Multiple dimensions
- Sequential noisy signals

Model Overview

Environment

- Uncertain state of the world
- Multiple dimensions
- Sequential noisy signals

Decision Problem

- Single decision at the end in one dimension
- Potential uncertainty which dimension is selected

Model Overview

Environment

- Uncertain state of the world
- Multiple dimensions
- Sequential noisy signals

Decision Problem

- Single decision at the end in one dimension
- Potential uncertainty which dimension is selected

Information Processing

- Remember posteriors?
- Remember signals?

Model - Environment

States of the world:

- D dimensions, each with realization 0 or 1
- State is given by $\omega \in \Omega=\times_{D} d$

Decision:

- Bet $b_{d, k}$: choice between two acts for every dimension d
- $a_{d, 0}$: if dimension d has realization $k=0$ pays off $L, 0$ otherwise
- $a_{d, 1}$: if dimension d has realization $k=1$ pays off $L, 0$ otherwise
- $\Delta(b)$ is a lottery over bets, with generic element q

Information:

- Prior belief $\psi \in[0,1]^{D}$
- T periods with signals $s^{t} \in S$
- Blackwell matrix $G_{\omega, s}$

Model - Decision problem

Summary

- Decision problem: q, L, T
- T signals
- At time $T+1$ face bet b drawn from q
- Choice between $a_{d, 0}$ and $a_{d, 1}$
- Payoffs are governed by L

Model - Information Processing (i)

Beginning of each period:

- Initial prior: $\psi \in[0,1]^{D}$,
- Remembered beliefs: Set $R^{t} \subseteq D$ with (posterior) beliefs ρ_{d}^{t},
- Remembered signals: Set M^{t} of pairs (m, τ) for $\tau \leq t-1$ and $m \subset S \cup \emptyset$.

Model - Information Processing (i)

Beginning of each period:

- Initial prior: $\psi \in[0,1]^{D}$,
- Remembered beliefs: Set $R^{t} \subseteq D$ with (posterior) beliefs ρ_{d}^{t},
- Remembered signals: Set M^{t} of pairs (m, τ) for $\tau \leq t-1$ and $m \subset S \cup \emptyset$.

After observing signal s^{t} :

- Update beliefs. Costless (for now)
- Assume Bayesian updating: $\beta_{d}^{t}\left(\psi, R^{t}, M^{t}, s_{t}\right) \in[0,1]$
- Remember posterior beliefs?
- Remember signals?

Model - Information Processing (ii)

Strategy:

- Choose strategy $\zeta=\left(\zeta^{1}, \ldots, \zeta^{T}\right)$
- ζ^{t} : mapping from $\psi, R^{t}, M^{t}, s^{t}$ to R^{t+1} and M^{t+1}

Model - Information Processing (ii)

Strategy:

- Choose strategy $\zeta=\left(\zeta^{1}, \ldots, \zeta^{T}\right)$
- ζ^{t} : mapping from $\psi, R^{t}, M^{t}, s^{t}$ to R^{t+1} and M^{t+1}

Remember posterior:

- Choose for any d to remember β_{d}^{t} at cost c
- If remembered $\left(y_{d}^{t}=1\right): d \in R^{t+1}$ and $\rho_{d}^{t+1}=\beta_{d}^{t}$

Model - Information Processing (ii)

Strategy:

- Choose strategy $\zeta=\left(\zeta^{1}, \ldots, \zeta^{T}\right)$
- ζ^{t} : mapping from $\psi, R^{t}, M^{t}, s^{t}$ to R^{t+1} and M^{t+1}

Remember posterior:

- Choose for any d to remember β_{d}^{t} at cost c
- If remembered $\left(y_{d}^{t}=1\right): d \in R^{t+1}$ and $\rho_{d}^{t+1}=\beta_{d}^{t}$

Remember signals:

- Choose to remember any previous signal at cost c

$$
m_{\tau}^{t+1}=\left\{\begin{array}{lll}
\emptyset & \text { if } z_{\tau}^{t}=0 \\
\begin{cases}m_{\tau}^{t} & \text { for } \tau \leq t-1 \\
s^{t} & \text { for } \tau=t\end{cases} & \text { if } z_{\tau}^{t}=1
\end{array}\right.
$$

Optimization Problem

Cost from information processing:

$$
E[C(\zeta)]=E\left[\sum_{t=1}^{T} \sum_{d=1}^{D} c \cdot y_{d}^{t}\left(\zeta^{t}\right)\right]-E\left[\sum_{t=1}^{T} \sum_{\tau=1}^{T} c \cdot z_{\tau}^{t}\left(\zeta^{t}\right)\right]
$$

Expected payoff:

$$
E[B(\zeta)]=E\left[\max \left\{a_{d, 0}, a_{d, 1}\right\} \mid \beta_{d}(\zeta)\right]
$$

Optimization Problem:

$$
\max _{\zeta} E[B(\zeta)]-E[C(\zeta)]
$$

Results

Proposition 1: Posteriors

There exist a \bar{q}, \bar{T} and \bar{L} so that for all problems q, L, T where the entropy of q is smaller than $\bar{q}, T \geq \bar{T}, L \geq \bar{L}$, for every $t \leq T$:

- $\tau \leq t,(m, \tau)=(\emptyset, \tau)$,
- for at least one $d, \rho_{d}^{t+1}=\beta_{d}^{t}\left(\psi, R^{t}, s_{t}\right)$ and $d \in R^{t+1}$ (unless $\rho_{d}^{t+1}=\psi_{d}$).

Results

Proposition 1: Posteriors

There exist a \bar{q}, \bar{T} and \bar{L} so that for all problems q, L, T where the entropy of q is smaller than $\bar{q}, T \geq \bar{T}, L \geq \bar{L}$, for every $t \leq T$:

- $\tau \leq t,(m, \tau)=(\emptyset, \tau)$,
- for at least one $d, \rho_{d}^{t+1}=\beta_{d}^{t}\left(\psi, R^{t}, s_{t}\right)$ and $d \in R^{t+1}$ (unless $\rho_{d}^{t+1}=\psi_{d}$).

Proposition 2: Signals

There exist a $\bar{T}, \bar{D}, \bar{q}$ and \bar{L} so that for all problems q, L, T, where $T \leq \bar{T}, D \geq \bar{D}$, the entropy of q is larger than \bar{q} and $L \geq \bar{L}$, for every $t \leq T$

- for all $t R^{t}=\emptyset$.
- For some $\tau \leq t-1$ and $s_{t} m_{\tau}^{t}=m_{\tau}^{t-1}$ and $m_{t}^{t}=s_{t}$

Extensions

Any q and T :

- Proposition 2: holds for any T
- Proposition 1: may not hold for any q

Extensions

Any q and T :

- Proposition 2: holds for any T
- Proposition 1: may not hold for any q

Different costs for remembering beliefs and signals:

- Proposition 2: unchanged
- Proposition 1: "batch" updating initially

Extensions

Any q and T :

- Proposition 2: holds for any T
- Proposition 1: may not hold for any q

Different costs for remembering beliefs and signals:

- Proposition 2: unchanged
- Proposition 1: "batch" updating initially

Costly updating of posteriors:

- Proposition 2: unchanged
- Proposition 1: repeated "batch" updating

Experiment

Design

Environment: Winning lottery numbers are picked by 3 people:

Team names	Members
'Size'	Hugh \& Loa
'Parity'	Eve \& Todd
'Round'	Iris \& Ron

Selected members ensure 75% of numbers are according to their liking.

Task: Guess which member from Team [...] was randomly selected.
Signals: Multiple winning lottery numbers.

Treatments

‘Posterior’ treatment:

- 14 signals
- Certain task: Guess selected member from Team 'Size'.
‘Signals’ treatment:
- 4 signals
- Uncertain task: Guess selected member from one randomly selected team.

Design

Elicitation

- Surprise question after $\sim 3 / 4$ of signals
- Question choice:
- Posterior: 'Based on the numbers you have seen, what is the chance that X was randomly selected from Team Y in the beginning?'
- Signals: 'What was the X-th winning number selected by the group of people?'

Design

Elicitation

- Surprise question after $\sim 3 / 4$ of signals
- Question choice:
- Posterior: 'Based on the numbers you have seen, what is the chance that X was randomly selected from Team Y in the beginning?'
- Signals: 'What was the X-th winning number selected by the group of people?'

Memory load

- Aim: Increase memory cost
- Distraction task after every signal:
- 8 digit number memory task
- 4 math questions

Timeline

Timeline

Hypothesis

Compare: Share of posterior/signal question choices.

Hypothesis: More subjects choose the posterior question in the 'posterior' treatment and vice versa.

Results

Main Hypothesis

Question choice

Figure 1: Question choice across the two treatments. Error bars show the 95\% confidence interval around the depicted sample mean.

Question choice: Posterior

Figure 2: Average reported posterior beliefs and confidence by subjects who chose this question. The red dashed line indicates the Bayesian posterior given the 11 or 3 previous signals subjects have seen in the respective treatment.

Question choice: Signals

Recall of hints

$100 \% \quad \sqrt{\text { Mean comparison }}$

Confidence: 'Correct Signal'

$100 \% \quad \sqrt{\text { Mean comparison }}$

Figure 3: Percentage correct recall of the signal and confidence by subjects who chose this question.

Conclusion

Conclusion

Summary

- People rationally choose what information to remember
- In some environments remember 'posteriors' and in others remember 'signals'.

Conclusion

Summary

- People rationally choose what information to remember
- In some environments remember 'posteriors' and in others remember 'signals'.

Next steps

- Theory: Cost of updating beliefs?
- Theory: Non-Bayesian updating?
- Experiment: Different factors of decision environments?
- Experiment: Show impact on final beliefs/decisions?

References

Bays, P. M. and Husain, M. (2008). Dynamic shifts of limited working memory resources in human vision. Science, 321(5890):851-854.
Bénabou, R. and Tirole, J. (2004). Willpower and personal rules. Journal of Political Economy, 112(4):848-886.
Benjamin, D. J. (2019). Errors in probabilistic reasoning and judgment biases. In Handbook of Behavioral Economics - Foundations and Applications 2, pages 69-186. Elsevier.
Bordalo, P., Conlon, J., Gennaioli, N., Kwon, S. Y., and Shleifer, A. (2023). Memory and probability. The Quarterly Journal of Economics, 138(1):265-311.
Brady, T. F., Konkle, T., and Alvarez, G. A. (2009). Compression in visual working memory: using statistical regularities to form more efficient memory representations. Journal of Experimental Psychology: General, 138(4):487.
Bénabou, R. and Tirole, J. (2002). Self-confidence and personal motivation. The Quarterly Journal of Economics.
Chatterjee, K., Guryev, K., and Hu, T.-W. (2022). Bounded memory in a changing world: Biases in behaviour and belief. Journal of Economic Theory, 206:105556.

Chatterjee, K. and Hu, T.-W. (2023). Learning with limited memory: Bayesianism vs heuristics. Journal of Economic Theory, 209:105642.
Chew, S. H., Huang, W., and Zhao, X. (2020). Motivated false memory. Journal of Political Economy, 128(10):3913-3939.
Cover, T. and Hellman, M. (1970). The two-armed-bandit problem with time-invariant finite memory. IEEE Transactions on Information Theory, 16(2):185-195.

Cowan, N. (2010). The magical mystery four: How is working memory capacity limited, and why? Current directions in psychological science, 19(1):51-57.
Da Silveira, R. A., Sung, Y., and Woodford, M. (2020). Optimally imprecise memory and biased forecasts. NBER Working Paper.
d'Acremont, M., Schultz, W., and Bossaerts, P. (2013). The human brain encodes event frequencies while forming subjective beliefs. Journal of Neuroscience, 33(26):10887-10897.
Dow, J. (1991). Search decisions with limited memory. The Review of Economic Studies, 58(1):1-14.
Enke, B. and Zimmermann, F. (2019). Correlation neglect in belief formation. Review of Economic Studies.
Ericsson, K. A. and Kintsch, W. (1995). Long-term working memory. Psychological review, 102(2):211.
Fudenberg, D., Levine, D. K., et al. (2014). Learning with recency bias. Proceedings of the National Academy of Sciences, 111:10826-10829.
Graeber, T., Zimmermann, F., and Roth, C. (2022). Stories, statistics, and memory. SSRN Electronic Journal. Hu, T.-W. (2023). Forgetful updating and stubborn decision-makers. Economic Theory, 75(3):781-802.

References if

Leung, B. T. K. (2023). A simple model of memory-based beliefformation. Working Paper.
Ma, W. J., Husain, M., and Bays, P. M. (2014). Changing concepts of working memory. Nature neuroscience, 17(3):347-356.
Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological review, 63(2):81.

Monte, D. (2005). Reputation with a bounded memory receiver. Working Paper.
Monte, D. (2013). Bounded memory and permanent reputations. Journal of Mathematical Economics, 49(5):345-354.
Monte, D. (2014). Learning with bounded memory in games. Games and Economic Behavior, 87:204-223.
Monte, D. and Said, M. (2010). Learning in hidden markov models with bounded memory. MPRA Paper, (23854).
Mullainathan, S. (2002). A memory-based model of bounded rationality. The Quarterly Journal of Economics, 117(3):735-774.
Neligh, N. L. (2022). Rational memory with decay. SSRN Electronic Journal.
Oberauer, K., Farrell, S., Jarrold, C., and Lewandowsky, S. (2016). What limits working memory capacity? Psychological bulletin, 142(7):758.

Shadlen, M. N. and Shohamy, D. (2016). Decision making and sequential sampling from memory. Neuron, 90(5):927-939.
Wachter, J. A. and Kahana, M. J. (2023). Associative learning and representativeness. SSRN Electronic Journal.
Wilson, A. (2014). Bounded memory and biases in information processing. Econometrica, 82(6):2257-2294.

